Numerical challenges to decomposition of real algebraic surfaces

Daniel Brake
in collaboration with
Dan Bates, Wenrui Hao, Jon Hauenstein,
Andrew Sommese, and Charles Wampler

16 January, 2015
Solving Polynomial Systems

Varieties and Components

Curves: $k = 1$

Surfaces: $k = 2$

Singular Curves

Conclusion
Polynomial Systems

Polynomials are everywhere!

- chemical reaction networks
- kinematics
- dynamical systems
- optimization
- many more
example $p(z)$

\begin{align*}
 x_0 + x_1 + x_2 + y_1 + y_2 + y_3 + y_4 - k_1 &= 0, \\
 e + y_1 + y_2 - k_2 &= 0, \\
 f + y_3 + y_4 - k_3 &= 0, \\
 -a_1 x_0 e + b_1 y_1 + c_4 y_4 &= 0, \\
 c_2 y_2 - a_3 x_2 f + b_3 y_3 &= 0, \\
 a_1 x_0 e - (b_1 + c_1) y_1 &= 0, \\
 a_2 x_1 e - (b_2 + c_2) y_2 &= 0, \\
 a_3 x_2 f - (b_3 + c_3) y_3 &= 0, \\
 a_4 x_1 f - (b_4 + c_4) y_4 &= 0.
\end{align*}

How to solve a system $p(z) = 0$? That’s hard!
How to solve $p(z) = 0$

There are many ways to ‘solve’ a polynomial system:

▶ If linear, invert the matrix. This is just linear algebra. Otherwise...

▶ Symbolically, the main method to use is Gröbner basis. Available in Macaulay2, Singular, Maple, etc. Work exactly over \mathbb{C} to find an ideal basis for the system p. ⇒ Result is a set of polynomials.

▶ Numerically, homotopy continuation methods find approximate solutions. Available in HOM4PS, Bertini, and others ⇒ Result is a set of points.
Homotopy Methods

$f(z) \quad H(z,t) \quad g(z)$

paths diverge convergent
paths

∞

C^N

Δt

$t = 0 \quad t = 1$
Start Systems

There are lots of ways to make start system g.

- Roots of unity - $g_i = z_i^{d_i} - 1$
- Total degree - $g_i = \prod_{j=1}^{d_i} \mathcal{L}_j(\vec{x})$
- Multi-homogeneous - $g_i = \prod_j \mathcal{L}(\vec{x}_{\sigma_k})$
- Polyhedral - g_i determined by the Newton Polytope

The canonical linear homotopy:

$$H(z, t) = t \cdot f(z) + \gamma (1 - t) \cdot g(z) = 0$$
Path Tracking

Given a homotopy $H(z, t)$, we wish to move in t from t_1 to t_0. How? By solving the Davidenko differential equation:

$$
\frac{\partial H(z(t), t)}{\partial t} + \sum_{i=1}^{N} \frac{\partial H(z(t), t)}{\partial z_i} \frac{dz_i(t)}{dt} = 0
$$

which more or less amounts to solving

$$
\frac{dz(t)}{dt} = -[JH(z(t), t)]^{-1} \frac{\partial H(z(t), t)}{\partial t}.
$$
Path Tracking

We can solve this diff-eq by discrete approximation and an Euler prediction step:

\[p_{i+1} = p_i - [JH(p_i, t_i)]^{-1} \frac{\partial H(p_i, t_i)}{\partial t} \Delta t_i \]

followed by a Newton correction step:

\[z_{i+1} = z_i - [JH(z_i, t_{i+1})]^{-1} H(z_i, t_i) \]
Difficult 1

Our first numerical difficulties:

- How to choose Δt_i?
- Is $[JH(p_i, t_i)]^{-1}$ and $[JH(z_i, t_{i+1})]^{-1}$ always computable?

Solutions to these problems:

- Δt_i is chosen adaptively, and we are permitted to step tentatively.
- Use adaptive multiple precision, to overcome the loss of precision through inversion.
 \Rightarrow you lose precision when inverting according to the condition number, the ratio of the two extreme singular values.
Solving Polynomial Systems

Varieties and Components

Curves: \(k = 1 \)

Surfaces: \(k = 2 \)

Singular Curves

Conclusion
Variety

The *zero-set* of a system of polynomials is the *variety*. Varieties consist of *components*, which have meta-data attached to them:

- dimension,
- degree,
- and others.

One primary goal of algebraic geometry is to discover, for $p(z)$, what is the structure of its variety $\mathcal{V}(p)$?
Witness Sets

Witness set - Numerical Algebraic Geometry’s representation of a positive dimensional component C over \mathbb{C}^N.

Consists of three things:

- points x – generic, nonsingular. $\# = \text{degree}(C)$.
- linears L – generic. $\# = \text{dim}(C)$.
- system f – possibly randomized, Jf is full rank on each x.

Positive dimensional \mathbb{C} components are nice - degree and structure are same almost everywhere.

\mathbb{R} not so much...
Real Posdim Components

Bertini_real – Numerical Cellular Decomposition

Setup

- Let f be a polynomial system with \mathbb{R} coefficients, and $f : \mathbb{C}^N \to \mathbb{C}^n$.
- Let $\mathcal{V}(f)$ be the variety of f.
- Consider $C \subseteq \mathcal{V}(f)$ be a component of dimension k.

Our objective is to decompose the real part of C; i.e., $C \cap \mathbb{R}^N$ or $\mathcal{V}_{\mathbb{R}}(f)$.
Solving Polynomial Systems

Varieties and Components

Curves: $k = 1$

Surfaces: $k = 2$

Singular Curves

Conclusion
Curves: $k = 1$
Curves: $k = 1$

Curve Cell
Curves

1. Find critical points
2. Intersect with sphere
3. Slice
4. Connect the dots
5. Merge
6. Refine

[Lu, Bates, Sommese, Wampler, 2006]
Curves

twisted cubic

\[f(x, y, z) = \begin{bmatrix} y - x^2 \\ z - x^3 \\ y^2 - xz \end{bmatrix} \]
Curves

Burmester 3-3 curve, dimension 14.
In 2d projection, of degree 128.
Critical points of curves

Computing critical points of curves is easy.\[^{\text{citation needed}}\]

Since f defines a dimension-one component, the working witness set comes with one random linear:

\[
\begin{bmatrix}
 f \\
 \mathcal{L}_1
\end{bmatrix}
\]

Then we use regeneration to solve the system

\[
\begin{bmatrix}
 f \\
 \det \left(\begin{bmatrix} J_f & J_{\pi_1} \end{bmatrix} \right)
\end{bmatrix}
\]

[Hauserstein, Sommese, Wampler, 2009]
Numerical Challenge 2

The second challenge –

- critical points are often singular.
That is, the Jacobian is singular! The condition number is infinite!

The solution –

- compute nullvectors simultaneously to the z variables of interest:

$$
\begin{bmatrix}
 f(x) \\
 v^T \cdot \begin{bmatrix}
 Jf(x) \\
 J\pi_1 \\
 \text{patch}_v
 \end{bmatrix}
\end{bmatrix}
$$
Solving Polynomial Systems

Varieties and Components

Curves: \(k = 1 \)

Surfaces: \(k = 2 \)

Singular Curves

Conclusion
Surfaces

$k = 2$
Surface Cell

Surfaces: $k = 2$
Surface Decomposition

1. Decompose critical curve
2. Decompose singular curves
3. Intersect with sphere
4. Slice
5. Connect the dots
6. Refine

[Besana, Di Rocco, Hauenstein, Sommese, Wampler, 2013]
Surface examples

\[
f(x, y, z) = (x^2 + y^2 + z^2 + 2^2 - \frac{1}{2})^2 - 16(x^2 + y^2)
\]
Surface examples

distel, unrefined

\[f(x, y, z) = x^2 + y^2 + z^2 + 1000(x^2 + y^2)(x^2 + z^2)(y^2 + z^2) - 1 \]

distel, refined
Surfaces examples

solitude

\[f(x, y, z) = x^2yz + xy^2 + y^3 + y^3z - x^2z^2 \]

klein

\[f(x, y, z, w) = \begin{bmatrix} w^2 + x^2 + y^2 + z^2 - 1 \\ 2wyz - x(y^2 + z^2) \end{bmatrix} \]
Fivebar mechanism kinematics
Six-dimensional trigonometric system,
passed through an atan2 projection
Midtracking

Simultaneously track all three systems
Challenge 3

Our third challenge:

- Midtracking tracks *three* systems simultaneously,
- The two boundary systems are often critical or singular curves,
- The endpoints on the boundary are often singular.

Solution:

- Rely on *adaptive multiple precision* and endgames to keep things nice.
Crit points of surfaces

Computing critical points of surfaces is hard.

- Surfaces have *critical curves*.
- Surfaces also have critical points themselves.
Numerical Challenge 4

Using the *determinantal* form of the criticality conditions:

witness set:

\[
f_{\text{crit_curve}} = \begin{vmatrix}
 f \\
 Jf \\
 J\pi_1 \\
 J\pi_2 \\
 L_1
\end{vmatrix}
\]

\[
f_{\text{crit_crit}} = \begin{vmatrix}
 f \\
 Jf \\
 J\pi_1 \\
 J\pi_2 \\
 \det \left(\begin{vmatrix}
 f \\
 Jf \\
 J\pi_1 \\
 J\pi_2
 \end{vmatrix} \right) \\
 \det \left(\begin{vmatrix}
 Jf \\
 J\pi_1 \\
 J\pi_2
 \end{vmatrix} \right) \\
 \det \left(\begin{vmatrix}
 Jf \\
 J\pi_1 \\
 J\pi_2
 \end{vmatrix} \right) \\
 \text{patch}_v
\end{vmatrix}
\]

- Determinant operation produces high degree polynomials, contributing to numerical issues.
- Using this formulation for dimension 3 decompositions will be even worse w.r.t. degree and computational complexity.
- Fortunately, we can still use the nullspace method for finding critical points of this curve.
Solving Polynomial Systems

Varieties and Components

Curves: \(k = 1 \)

Surfaces: \(k = 2 \)

Singular Curves

Conclusion
Example - Solitude
How to find singular curves

1. Compute witness set for critical curve.
2. Separate singular points from nonsingular.
 - Nonsingular \rightarrow critical curve.
 - Singular \rightarrow singular curve(s).
3. Separate singular witness points by deflation sequence.
4. Decompose each singular curve.
Practical Challenge 5 - Deflation

Deflation

- Making the untrackable, trackable.
- Removing singularity of points.

Deflation:

- Determinental - adds no variables, but \textbf{lots} of functions

\[g_{\det} = \begin{bmatrix} f(x) \\ \det J_{\sigma_1} f(x) \\ \vdots \\ \det J_{\sigma_m} f(x) \end{bmatrix} \]

[Hauenstein, Wampler '13]
Example - Solitude

Solitude:

\[f(x, y, z) = x^2yz + xy^2 + y^3 + y^3z - x^2z^2 \]

\[D^1 = \begin{bmatrix}
 x^2yz + xy^2 + y^3 + y^3z - x^2z^2 \\
 y^2/4 - (xz^2)/2 + (xyz)/2 \\
 (xy)/2 + (x^2z)/4 + (3y^2z)/4 + (3y^2)/4 \\
 (x^2y)/4 - (x^2z)/2 + y^3/4
\end{bmatrix} \]
\begin{equation}
\mathcal{D}^2 = \begin{bmatrix}
x^2yz + xy^2 + y^3 + y^3z - x^2z^2 \\
y^2/4 - (xz^2)/2 + (xyz)/2 \\
(xy)/2 + (x^2z)/4 + (3yz^2)/4 + (3y^2)/4 \\
(x^2y)/4 - (x^2z)/2 + y^3/4 \\
(y^2z^2)/8 - (x^2z^3)/24 + (y^2z^3)/8 - (yz^2)/8 - (y^3z)/8 + y^3/24 + (xy^2z)/24 + (x^2yz^2)/24 \\
(x^2z^3)/12 + (y^3z^2)/24 + (xy^3)/24 - (x^4z)/24 - (xy^2z)/12 - (x^2yz^2)/8 + (x^2y^2z)/24 \\
(x^2y^2)/24 + (xy^3)/8 - y^4/24 - (xy^2z)/4 - (x^2yz)/12 + (y^3z)/12 - (xy^2z^2)/4 \\
-(x(x^2z^2 - 3y^2z^2 + 2xz^2 + 6yz^2 - 3y^2z + 6yz^3 + y^2 + xyz))/24 \\
(y^3)/12 - (x^2y^2)/16 + (x^3z)/12 + (x^4z)/48 + (y^4z)/16 + y^4/16 + (x^2yz)/4 + (x^2yz^2)/4 \\
(x^3z^2)/24 - (x^2y^2)/16 - (xy^2)/8 + y^4/16 + (xy^2z)/4 + (x^2yz)/6 + (x^2y^2z)/8 \\
-(x(x^2y^2 + 2x^2z^2 + xy^2 - 2y^3z + y^4 - 2x^2yz))/24 \\
-(y(4x^2y^2 + 6x^2y + 4x^3 + x^4 + 3y^4))/48 \\
(y^2z^2)/12 - (x^2z^2)/36 - (x^2z)/36 - (yz^2)/12 + (y^2z)/12 - (yz^3)/12 - y^2/36 - (xyz)/36 \\
(x^2z^3)/24 - (y^2z^2)/24 - (x^2z)/24 + (y^3z)/24 - (x^2yz)/72 + (xyz)/18 \\
(x^2z)/18 - (x^2y)/72 - (xy^2)/12 + (x^3z)/72 + y^3/24 + (xyz^2)/6 - (x^2yz)/24 + (xyz)/6 \\
(x^2z^2)/24 - (y^2z^2)/24 - (x^2y^2)/24 - (x^2z)/24 + (y^3z)/24 - (x^2yz)/72 + (xyz)/18 \\
-(x^2(y^2 - 3yz + 3z^2))/36 \\
-(xy(2x - 6yz + x^2 + 3y^2))/72 \\
(x^2z)/18 - (x^2y)/72 - (xy^2)/12 + (x^3z)/72 + y^3/24 + (xyz^2)/6 - (x^2yz)/24 + (xyz)/6 \\
-(xy(2x - 6yz + x^2 + 3y^2))/72 \\
-(x^2y^2)/24 - (x^2y)/12 - x^3/36 - x^4/144 - y^4/16 - (x^2yz)/12
\end{bmatrix}
\end{equation}
3D Printing

1. Run Bertini
2. Run Bertini_real
3. Refine
4. Process into .stl
5. Thicken surface
6. Print

<table>
<thead>
<tr>
<th>dimension</th>
<th>components</th>
<th>classified</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1</td>
<td>4</td>
</tr>
</tbody>
</table>

****** Witness Set Decomposition ******

****** Decomposition by Degree ******
Dimension 2: 1 classified component
degree 4: 1 component
Solving Polynomial Systems

Varieties and Components

Curves: $k = 1$

Surfaces: $k = 2$

Singular Curves

Conclusion
Last Notes

- There are lots of ways to get ahold of algebraic varieties,
- I discussed *numerical* methods here,
- The fundamental computed unit at every stage is a point,
- Inversion of matrices incurs *loss of precision*,
- Techniques to overcome numerical challenges involve:
 - Solving a different problem (*reformulation*),
 - Using longer numbers (*adaptive multiple precision*),
 - Using fancy techniques at the end of a path (*endgames*),
Thank you for your kind attention.
Acknowledgements

- **Bertini_real** is joint work with Dan Bates, Jon Hauenstein, Wenrui Hao, Charles Wampler, and Andrew Sommese.
- We have been graciously funded by the NSF, and DARPA.
Curve Merging

Homotope an old midpoint

Delete all red objects

Combined merge -- merges multiple edges simultaneously

\[p_{\text{new}} = \frac{p_{\text{left}} + p_{\text{right}}}{2} \]

\[(1 - t) \left[\frac{f(x)}{\pi_0(x) - p_{\text{new}}} \right] + t \left[\frac{f(x)}{\pi_0(x) - p_{\text{old}}} \right] = 0 \]
Curve Sampling

Fixed-number sampling

Uneven in space

Discretize so has μ total points

Perfectly uniform in projection value

Adaptive sampling

More uniform in space

Bisect intervals until distance $< \varepsilon$

Non-uniform in projection value
Surface Refinement

Raw face and edges

Top
Right
Midpoint
Bottom
Left

Refine the edges

Add ribs

Triangulate