Workspace Estimation of Cooperating Robots after Joint Failure

Daniel A. Brake Daniel J. Bates Vakhtang Putkaradze Anthony A. Maciejewski

Colorado State University

D. Brake partially supported by grants NSF-DMS-09087551 and NSF-IIS-0812437.
D. Bates partially supported by grants NSF DMS–0914674.
V. Putkaradze partially supported by grant NSF-DMS-09087551.
A. Maciejewski partially supported by grant NSF-IIS-0812437.

25 May, 2011
Scenario

Many robots are designed to work in remote or dangerous locations. Suppose:

- System has multiple robotic arms,
- Workspaces of arms overlap,
- Arms capable of grasping each other,
- One arm undergoes free-swinging joint failure.

Then, to maximize a weighted sum of pre- and post-failure workspaces:

1. How close should the arms be?
2. Where should they connect post-failure?

Our method to answer the questions is:

- Use *homotopy continuation* to solve inverse kinematics at a randomly chosen sample of space.

The Problem

Optimize to determine a and δ:

- Robots separated by distance δ,
- Right robot (#2) grasps left (#1) at point P, at distance a from the second joint of robot 1, so that some function of the post-failure workspace is maximized.

2D Example of problem.
There are four workspaces to consider:

- W_1, W_2, the *pre-failure* workspaces for robots 1 & 2.
- $W_\cap = W_1 \cap W_2$, the *intersection* of the two pre-failure workspaces. Depends on δ.
- W_f, the *post-failure* workspace. Depends on δ and a.

Our objective is to maximize some function Ω of these four workspaces. We used,

$$\Omega = (1 - \lambda) \cdot |W_f| + \lambda(|W_1| - |W_\cap|),$$

where λ is a problem-specific weighting factor.

Note: $|W_1| - |W_\cap|$ is a measure of the benefit of having the second robot.
Jacobian Method

Traditionally, one would use *Jacobian Method* to solve problem:

- Start robot from initial state, use Jacobian Control\(^2\) to move robot to desired point.:
 \[
 \dot{x} = J(\theta) \cdot \dot{\theta}
 \]
- If robot can come within \(\epsilon\) of point, it is in workspace. Else, out.
- Alternately, one could move robot to boundary of workspace, and move in *nullspace* of Jacobian to trace boundary.

Method has shortcomings, however:

- Can only find *one* solution per point.
- Can miss voids in workspace.
- Hard to measure volume of calculated workspace.

Motivation for using Homotopy Continuation

Inverse kinematics equations are polynomial systems.

Algebraic Geometry (AG) is the study of solving polynomial systems.

Numeric AG mature enough to solve large systems numerically with high precision, quickly.

We use the freely available package Bertini.

Full 6D inverse equations have no closed form solution - solve numerically.

Finds all isolated solutions.
Want to solve a square polynomial system (N equations in N unknowns).

Have solutions to a related system.

Continuously deform the known, solved system into unsolved system.

Deformation continuously changes the solutions. This forms *solutions curves* or *paths*.

Track individual solutions from known into unknown, numerically.
The *Bertini*\(^3\) software package is a sophisticated tool for solving polynomial systems with homotopy continuation. Some benefits and features include:

- Arbitrarily high accuracy,
- Parameter and custom homotopy definitions,
- Positive-dimensional component detection and (complex) sampling,
- Parallel version with MPI,
- Free to use.

Both robots identical, with all links of length 1. Then $W_1 = W_2$, translated by δ.

Initial sampling of $[-2, 2] \times [-2, 2]$ for computing W_i.

Inverse kinematics equations is a system of two equations in two variables (2 by 2), which we transform into a 4 by 4 system:

$$0 = \begin{cases} c_1 c_2 - s_1 s_2 + c_1 - x \\ s_1 c_2 + c_1 s_2 + s_1 - y \end{cases}.$$
(1)

These equations are augmented by trigonometric identities,

$$c_i^2 + s_i^2 - 1 = 0, \quad i = 1, 2.$$
(2)
For each of the four workspaces,
- \(W_1, W_2 \), the prefailure independent workspaces,
- \(W_\cap \), the intersection of the prefailure workspaces, and
- \(W_f \), the cooperative postfailure workspace.

We (pseudo-) randomly sample space guaranteed to contain the workspace.

We estimate the size of the workspace in the typical Euclidean measure, as the fraction of the sample that has real solutions to the inverse kinematics problem.
Having W_1, next we compute W_\cap.

- Since $W_\cap \subset W_1$, throw out points from original sample that had no solutions.

- $W_\cap = W_\cap(\delta)$, so translate sample for each δ.

- Use same equations, solve with respect to robot 2.
Using $W_f \subset W_1$, solve new equations for grasping configuration.

Solve for each pair of (δ, a) values.

W_f system is 8 by 8:

\[
0 = \begin{cases}
 c_1 c_2 - s_1 s_2 + c_1 - x \\
 s_1 c_2 + c_1 s_2 + s_1 - y \\
 a c_1 c_2 - a s_1 s_2 + c_1 - (c_3 c_4 - s_3 s_4 + c_3 + \delta) \\
 a s_1 c_2 + a c_1 s_2 + s_1 - (s_3 c_4 + c_3 s_4 + s_3) \\
 s_i^2 + c_i^2 - 1
\end{cases}
\]
Cooperative workspaces for $\delta = 2$, $a = 0.1, 0.5, 0.9$. Black: unreachable by robot 1 in cooperative mode, dark gray: two configurations reachable, light gray: four configurations reachable. White area is outside the workspace of robot 1.
Plots of intersection workspace and post-failure workspace as functions of δ and a.

(a) $|W_n|(|\delta|)$.

(b) $|W_f|(|\delta, a|)$.

Brake et al. (Colorado State) Cooperating Robots 25 May, 2011 14 / 20
\[\Omega = (1 - \lambda) \cdot |W_f| + \lambda(|W_1| - |W_n|) \]

- \(\lambda = 0 \)
- \(\lambda = 1/3 \)
- \(\lambda = 2/3 \)
- \(\lambda = 1 \)
Puma 5xx Robot

A fully 6D robot.

- First three joints control position,
- Last three, a wrist, controls orientation.

<table>
<thead>
<tr>
<th>Joint i</th>
<th>θ_i</th>
<th>α_i</th>
<th>a_{i-1}</th>
<th>d_i</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>θ_1</td>
<td>$-\pi/2$</td>
<td>0</td>
<td>243.5 mm</td>
<td>R</td>
</tr>
<tr>
<td>2</td>
<td>θ_2</td>
<td>0</td>
<td>431.8 mm</td>
<td>-93.4 mm</td>
<td>R</td>
</tr>
<tr>
<td>3</td>
<td>θ_3</td>
<td>$\pi/2$</td>
<td>-20.32 mm</td>
<td>433.1 mm</td>
<td>R</td>
</tr>
</tbody>
</table>

Note: also need the tool-frame.

Corke, Armstrong-Helouvry. Robotics and Automation. 1994
3D W_i Equations for Puma 500

\[
0 = \left\{
\begin{array}{l}
0.15005s_1 + 0.4318c_1c_2 + 0.4318c_1c_2c_3 - 0.4318c_1s_2s_3 - x \\
0.4318c_2s_1 - 0.15005c_1 + 0.4318c_2c_3s_1 - 0.4318s_1s_2s_3 - y \\
0.4318s_2 + 0.4318c_2s_3 + 0.4318c_3s_2 + 0.67 - z \\
s_i^2 + c_i^2 - 1
\end{array}
\right.
\]

One equation per dimension, plus the Pythagorean identity relating the sine and cosine pairs, for each $i = 1..3$.
Top: Slices of the pre-failure PUMA workspace W_1 by the planes $x = 0$ (left) and $z = 0$ (right). Bottom: Combined picture of workspace with three slices $x = 0$, $y = 0$, $z = 0$. Yellow color: areas accessible the angles satisfying joint limits. Red color: real solutions violating joint limits. Dark blue region: inaccessible.
Top left: Measurement of the intersection workspace $|W_\cap|$, as a function of δ. Rest: Contours of the objective function Ω versus (δ, a) for 3D cooperating robots. Note that for the case (upper right), $\lambda = 0$ and the objective function Ω is equal to the measure of post-failure workspace $|W_f|$.
Inverse Kinematics equations may be turned into polynomial systems, and solved via homotopy continuation.

Robot workspaces may be estimated via Monte Carlo methods - random sampling, and repeated solving of the inverse kinematics.

Optimal placement of robot bases, and sockets on links, depends on Ω, which in turn depends on user’s choice of weighting factor λ.

Generalization to 6D robots will require uniform sampling of 3D rotations.

Kinematically redundant robot analysis suffers from the curse of dimensionality.